Asset Management and ADA Compliance–Building a Risk Mitigation Strategy using VUEWorks

What is the Americans with Disabilities Act?

The Americans with Disabilities Act of 1990 (ADA) prohibits discrimination and ensures equal opportunity for persons with disabilities in employment, State and local government services, public accommodations, commercial facilities, and transportation. Final regulations revising the Department’s ADA regulations, including its ADA Standards for Accessible Design was published in the Federal Register on September 15, 2010 (corrections to this text were published in the Federal Register on March 11, 2011). ADA covers all state and local governments, including those that receive no federal financial assistance.

While the ADA has five separate titles, Title II is the section specifically applicable to “public entities” (state and local governments) and the programs, services, and activities they deliver.  The Department of Justice (“DOJ” or the “Department”), through its Civil Rights Division, is the key agency responsible for enforcing Title II and for coordinating other federal agencies’ enforcement activities under Title II.  DOJ is the only federal entity with the authority to initiate ADA litigation against state and local governments for employment violations under Title I of the ADA and for all violations under Title II of the ADA.

Who does it Affect?

  • Americans with disabilities and their friends, families, and caregivers
  • Private employers with 15 or more employees
  • Businesses operating for the benefit of the public
  • All state and local government agencies

Title II of the Americans with Disabilities Act (ADA) requires that state and local governments ensure that persons with disabilities have access to the pedestrian routes in the public right of way. An important part of this requirement is the obligation whenever streets, roadways, or highways are altered to provide curb ramps where street level pedestrian walkways cross curbs. This requirement is intended to ensure the accessibility and usability of the pedestrian walkway for persons with disabilities.

What is the Difference between Maintenance or Alteration?

An alteration is a change that affects or could affect the usability of all or part of a building or facility. Alterations of streets, roads, or highways include activities such as reconstruction, rehabilitation, resurfacing, widening, and projects of similar scale and effect. Maintenance activities on streets, roads, or highways, such as filling potholes, are not alterations. Treatments that serve solely to seal and protect the road surface, improve friction, and control splash and spray are considered to be maintenance because they do not significantly affect the public’s access to or usability of the road.  Some examples of the types of treatments that would normally be considered maintenance are:  painting or striping lanes, crack filling and sealing, surface sealing, chip seals, slurry seals, fog seals, scrub sealing, joint crack seals, joint repairs, dowel bar retrofit, spot high-friction treatments, diamond grinding, and pavement patching.  In some cases, the combination of several maintenance treatments occurring at or near the same time may qualify as an alteration and would trigger the obligation to provide curb ramps. 

Where must Curb Ramps be Provided?

Generally, curb ramps are needed wherever a sidewalk or other pedestrian walkway crosses a curb. Curb ramps must be located to ensure a person with a mobility disability can travel from a sidewalk on one side of the street, over or through any curbs or traffic islands, to the sidewalk on the other side of the street. However, the ADA does not require installation of ramps or curb ramps in the absence of a pedestrian walkway with a prepared surface for pedestrian use. Nor are curb ramps required in the absence of a curb, elevation, or other barrier between the street and the walkway.

What are Detectable Warnings?

“A standardized surface feature built in or applied to walking surfaces or other elements to warn visually impaired people of hazards on a circulation path.

  • ADAAG: Required on curb ramps, hazardous vehicular areas, and reflecting pools, but not on doors to hazardous areas. The warnings must be truncated domes (§4.29). 
  • UFAS: “Tactile warnings” (uses different terminology) required only on doors to hazardous areas. Must be a textured surface on the door handle or hardware (§4.29).

As a Public Agency, How Should I approach Compliance with Limited Resources?

Public agencies are constantly chartered with conducting business and doing “more with less”.  This includes achieving compliance with Federal Mandates that require infrastructure investment, but do not provide a funding mechanism to support it.  In the industry, we call them “unfunded mandates”. 

Many agencies struggle with these mandates for the following reasons:

  1. The existing infrastructure is non-compliant and therefore requires significant investment to bring it into compliance.
  2. Agencies do not have the ability to pay for the infrastructure enhancements required to achieve compliance.
  3. Agencies are hesitant to assess their compliance because if they document problems, then they feel obligated to fix them.

Therefore an attitude of “If I don’t know how bad the problem is, I can ignore it for the time-being…” becomes pervasive throughout many of these Public Entities.  By “not knowing” how non-compliant their agency is in regards to this requirement, the agency is actually creating more litigation risk for itself.  At VUEWorks, we have developed an ADA-compliance methodology that utilizes GIS and Risk-based prioritization to develop a long-term plan focused on ADA compliance.

The plan is simple and follows the typical Asset Management life-cycle approach:

  • Inventory – Utilizing GIS, mobile mapping and boots-on-the-ground inspection (where required).
  • Assess – Visually inspect infrastructure assets and quantify their compliance.
  • Prioritize – Develop a list of high-risk assets that need immediate attention.
  • Execute – Re-construct, upgrade or maintain infrastructure assets that are part of an annual work plan.
  • Rinse and Repeat – Execute work plan annually and re-assess the network of assets every 3-5 years to update the plan.

Next week’s blog will focus on how VUEWorks is utilized to achieve ADA compliance while limiting litigation risk to your agency…

Advertisements

Asset management strategies–which is right for me?

We get a lot of questions about developing the right strategy as it relates to assets that are managed by different agencies.  These questions are typically focused on “How” to manage assets, which typically comes after the agency decides “Why” to manage assets.

Here are some typical questions:

  1. When is the best time to manage my asset in its life-cycle?
  2. When do I rehabilitate my asset?
  3. What do I do to the asset?
  4. When do I replace my asset?
  5. Can I just let it runs its course and when it fails, replace it?
  6. Should I invest time and money in an asset early in its life-cycle or wait until it is in poor condition to fix it?

We always recommend starting this process by understanding a few things about the asset.

1.  Financial Considerations – How much does an asset cost to install and Maintain?  Is it capitalized or not?   In most cases, the cost of an asset has a large impact on how it is managed.  This is not the only consideration, but we can use it as a starting point.

image

2.  Risk Considerations – What are the consequences to the agency if this asset fails?  Will someone get hurt?  Will it cause an accident?  These are closely tied to other financial considerations such as tort liability.

image

3.  Life-Cycle Considerations – How does the asset typically deteriorate?  Is it straight-line deterioration or more of a polynomial-type of a curve?  This information helps determine what to do to an asset and when to do it (less cost when starting earlier in the process).  Programmatic treatments or inspection-driven treatments are common approaches to managing assets with this approach.

DCurves

Once an agency has a solid understanding of the Financial, Risk and Life-Cycle considerations related to an asset, they can begin to develop a management strategy specifically for the asset type to be managed.  Since every asset can be managed differently, we will focus on a couple of assets and their management strategy.

Pavement

  1. Financial – Capitalized asset – high cost to install and maintain.
  2. Risk – Critical to the movement of people and commerce – high consequence of failure.
  3. Life-Cycle – Long-term asset with long-term life expectancy – Can be managed using a life-cycle or Inspection-based approach.

Pavements have a long history of research and empirical data models that have been developed for Airports, Parking lots and Roads and a variety of software exists to support the maintenance of this asset.  Therefore, it is pretty easy to choose an approach to manage pavement based on an agency’s goals and priorities.  Typically this program is inspection-driven (every 3-5 years) and focuses on finding the best mix of Preservation and Rehabilitation activities designed to achieve their target Level-of-Service.

Signs

  1. Financial – Capitalized asset – low to high cost to install and maintain.
  2. Risk – Critical to the safety of people and commerce – low to high consequences of failure.
  3. Life-Cycle – Medium to long-term life-expectancy – Can be managed using a life-cycle or Inspection-based approach.

Signs have less empirical data collected for them and can have varied Financial, Risk and Life-cycle information compiled and available throughout the industry.  Strategies for management are typically focused on Life-Cycle and Risk and there are many methodologies that are accepted by FHWA.  These are outlined in their Manual on Uniform Traffic Control Devices (MUTCD) and are widely utilized throughout the US.

Light Poles

  1. Financial – Capitalized asset – medium cost to install and maintain.
  2. Risk – Semi-Critical to the safety of people and commerce – low to high consequences of failure.
  3. Life-Cycle – Medium to long-term life-expectancy – Can be managed using a life-cycle or Inspection-based approach.

Light poles are typically managed by inspection of their base attachments (every 10 years or so) but many agencies typically run these assets to failure (luminaire failure or pole failure).  This is another mixed bag of management because some light poles provide a critical safety function (DOT) and others just light the way for safety (walkways) and are not as critical to the daily operations of an agency.

These are just a few examples of strategy development – we would love to see comments related to the infrastructure that you manage and we will reply with some of the Industry’s Best-Management-Practices (BMPs) that are successfully used throughout the US.

Work Bundling for Utilities

Many utilities collect their infrastructure inspection data using a variety of techniques, sources and systems of record.  Having many different repositories of digital information makes it difficult to make informed decisions about where to spend operations and maintenance (O & M) and capital project dollars.  Having a “crystal ball” that aggregates all of this data into one single user interface could help these utilities make more informed decisions for their infrastructure as a whole, instead of using one inspection type to make these decisions.

For example, utilities typically collect information related to their structures and spans using one or a combination of these inspection techniques:

  1. Patrols
  2. Corona
  3. Infrared Inspections
  4. Climbing Inspections
  5. Walking Inspections
  6. Vegetation Points-of-Interest (LiDAR and Visual) Inspections
  7. NERC encroachments (LiDAR) Inspections
  8. Comprehensive Visual Inspection (CVI)

All of these inspections generate a large amount of data independent of one another and can be very useful if combined based on a unique structure or span number.  Once combined, this information can then be used to determine the best way to bundle work activities to achieve the greatest return-on-investment (ROI).

PowerVUE

Work bundling is a concept that has been well understood in the utility industry but not commonly practiced due to the disparate ways in which inspection data is collected and accessed from within a single agency.  Many work management systems only focus on the recording of work order information related to the labor, equipment and materials used to perform a project, but do not contain strategic planning tools.  These tools allow an agency to conduct “what-if” scenarios by applying different budget amounts against a planned work matrix.

PowerVUE_Solution

Once the optimal work matrix is determined, a workplan for that utility can then be planned and programmed, executed and tracked as a project or a series of projects for that planning horizon.  All costs related to that work matrix can be applied to each asset and tracked against an overall workplan budget.  These actual costs are then compared to the estimated costs to refine the planning matrix unit costs that are feeding the budget forecasting model.

As an agency completes the work for that particular period, it can then record the work activities against a particular asset which determines its next activity that is due in its life-cycle.  As this feedback loop is established, more cyclical work can be planned and programmed for future fiscal years and budget plans.

This concept has been applied at many utilities through the US using an asset management software called VUEWorks.  This software is GIS-centric at its core and allows users to connect their GIS data to their asset management system through the use of Esri GIS software.  The utility creates a map service which is consumed by VUEWorks and provides a mapping framework from which users can view inspection data from various sources.

For example, a helicopter inspection company collects CVI data by flying next to the transmission structures and collects high-resolution imagery of any defects located on that structure or its associated span.  Another vendor collects walking inspection information which includes subterranean excavations around a structure and its supports.  These inspections yield different defects which may require different types of activities to correct them.  This is where the concept of work bundling can be used.

Dist_CVI

Since each inspection yielded different defects, the structure or span will need to be worked on at some point.  It is important that all departments responsible for line maintenance understand all of the defects present on a particular structure or span so that they can conduct all work activities at the same time.  In essence, VUEWorks provides this exact information, all in one place.  The utility has the ability to link all of this data together based on a structure or span ID and can then view all inspection data from one single user interface.

Bundling

This concept is important because if a utility needs to de-energize a line for maintenance or capital improvements, it will want to ensure that all issues are resolved during one outage.  Multiple outages cost money and this concept of work bundling is helping utilities achieve high ROIs for these projects by combining projects into one single project, instead of multiple projects.

In conclusion, the concept of work bundling saves utilities time and money through the aggregation of data into a single user repository.  This information can easily and effectively be used to make informed decisions and avoid multiple outage situations.  By combining multiple inspection data sets together, utilities can more proactively manage their assets cost-effectively while extending the useful life of their infrastructure investment.

Transmission and Distribution Utility Infrastructure Capital Planning; A LiDAR and GIS-Centric, Data Fusion and Risk-Based Prioritization Approach

Introduction

Now that the NERC alert bubble has burst, the transmission and distribution sectors of the power industry has a wealth of information that can be leveraged to enhance their business operations. Most power companies are using LiDAR, Imagery and GPS data to collect detailed information about their infrastructure and this information can be leveraged to develop a GIS-centric Asset Management database. So, what can an agency do to leverage this information, especially when it comes from multiple vendors, sensors and vintages?

First, it is important to find the common denominator between all of the data the agency is working with. Utility data typically uses a Structure ID or Span ID that can be used to tie all of this information together from a database perspective. The location of the Structure or Span can also be used to tie information together geographically from a mapping perspective as well as temporally for those agencies collecting information annually or as part of a particular inspection time series.

Next, the agency can visualize all of this information spatially utilizing a GIS so that spatial patterns can be observed. Typical spreadsheet-based deliverables are missing the spatial relationships that can be used to develop better maintenance and operation plans by observing how assets interact with one another. This spatial perspective adds another valuable dimension to help agencies prioritize where to spend their limited resources.

Finally, a Risk-Based prioritization model can then be developed to help the agency decide where to spend their limited funding resources. The assets that pose the highest risk score based on the Probabilities of Failure and the Consequences of those failures can be prioritized, thus limiting the risk to the agency based on these types of failures.

LiDAR Data Collection, Utility Asset Extraction, and Inspection Data Aggregation

LiDAR data can be captured from fixed-wing aircraft or helicopter platforms, depending on the required resolution of the data. Most agencies are interested in capturing information about features that are located within the right-of-way of a powerline or its associated structures. These features are classified in the point cloud and then modeled using encroachment measurement criteria to identify potential hazards to the powerline infrastructure.

The LiDAR point cloud can be used to model the existing as-built structures, tops of towers, conductors, as well as the bare-earth ground model of the area. This information is then loaded into PLS-CADD software and modeled at a maximum load (sag) and maximum blowout conditions. Any LiDAR features that intersect with these “safe zone envelopes” are flagged as encroachments and will be highlighted in the PLS-CADD reports. These reports are exhaustive in terms of the amount of good information contained within them, but can be overwhelming to an agency when trying to figure out “where” to start focusing their time and resources on corrective actions.

1_PowerlineDefinitionfromPointCloud

Once all of this analysis has been performed, these encroachment features can be geospatially located and mapped for further analysis. For example, vegetation encroachments can be identified as either “grow-in” or “fall-in” potentials and these points are classified as such.

Vegetation Encroachment Management

GIS mapping provides the user the spatial context necessary to make informed Operations and Maintenance decisions.  As an example, the location of vegetation encroachments is known and with a little manipulation, the volume and area of the vegetation can be determined very easily.  This gives an agency the ability to control the costs associated with their vegetation management program.  Since the agency knows so much about their encroachments, they can very accurately determine the volume of vegetation that needs to be removed.

 2_2DVeg_EncroachGrowinFallin

The agency also knows other geospatial characteristics of the vegetation units and can then apply specific cost factors to the removal process.  In addition, GIS also provides a great way to provide contractors with maps and exhibits that will help them generate more accurate bids based on relevant information.  A typical vegetation removal contract is assigned to a forestry company who heads to the field and clears vegetation based on their perception of what needs to be removed.  Now, agencies can tell the forestry companies exactly how much (estimated) vegetation needs to be removed and WHERE it is.

Risk-Based Asset Prioritization of Work Activities

Once your agency has identified where the encroachment issues are, how do you design a plan of action that gives your agency the biggest bang for your buck? In other words, there may be a section of powerline that contains many different encroachment types – Vegetation, Building, Ground Clearance, etc. Another section of line may only have Vegetation encroachments. The agency is most likely handling the corrective actions for these issues out of multiple departments and for good reason. Each type of encroachment brings its own set of design standards or engineering challenges to the table and all of these needs to be considered when designing a corrective action program for the facility.

One criterion that can be applied to this information is the concept of Risk.  Risk takes into consideration the consequences of failure of a particular asset and then provides a Criticality Index for specific Asset Classes and Asset Types.  The more critical the Asset – the higher the priority it gets when determining an agency’s primary work focus.  In other words, this concept helps to identify the most critical components of your infrastructure and helps you to prioritize its maintenance over less critical assets.  By prioritizing using Risk, an agency can take measures to minimize the Risk that exists in its Asset portfolio by fixing these pieces and parts first.

3_Risk_Condition

Risk models can be very complicated or very simple. It is dictated based on the information you wish to maintain moving forward and can use multiple automated inputs to help ease the data management strain moving forward. For example, an agency is using their LiDAR information to calculate the risk to a facility based on the number of LiDAR points that have been identified as encroachments as well as their height above ground; the higher the point, to more risky it is to the facility. In other words, the higher the vegetation feature, the more risk it poses to the facility. Since LiDAR data is composed of 3D points, the densities of these points can be applied to the facility’s risk score and then used to help prioritize the facilities that need the most work immediately.

Developing a Project Matrix and Estimating Costs Using Budget Forecasting

Once the facilities have been prioritized using the Risk concepts described above, the agency can then start planning for the actual work activities that will need to happen as part of their annual capital improvement planning activities. This can be achieved by using the Risk scores to determine which facility needs to be worked on and how much it will cost to improve that facility.

First, the facility components can be modeled from the LiDAR point cloud. As a simple example, we can imagine a distribution facility composed of a wood pole, conductors, cross-arm, guy wires and associated hardware. Each one of these facility components has a cost component associated with it based on the materials used and the characteristics of how it was constructed. The cost of materials can then be applied to each component and an overall facility cost can then be determined for the asset.

4_VegetationStatistics

Once the facility templates are constructed, the agency can then start developing projects to improve or replace these facilities based on the results of the inspection information. This activity will allow the agency to determine the cost of a project in relation to their annual maintenance and operations budgets and then determine what they can improve for that fiscal years’ time frame.

Project_Matrix

All of this information can then be used to determine future years’ capital improvement plans based on funding availability and projected costs over time. This helps the agency to plan for future fiscal expenditures using a repeatable and defensible model that can be applied to different Asset Classes and Asset Types. In other words, multiple, disparate data sources can be fused to support the risk-based prioritization of work activities.

Sign Retroreflectivity Compliance and Asset Management

Over the past few years, there have been many projects designed to determine an agency’s sign retroreflectivity compliance across their road network. Each project has been unique in terms of how the agency collected the data and how they ultimately managed the data into the future. Recent MUTCD regulations require the development of an inventory management program that documents the installation, maintenance and construction characteristics of sign infrastructure. Many agencies are faced with the daunting task of funding a replacement program that will comply with these new regulations into the future. Ultimately, the replacement plan needs to address non-compliance issues that are identified during the inventory/inspection process.

Step 1 – Sign Inventory

The first step in the compliance process begins with an accurate inventory. Signs can be collected utilizing many different techniques and each technique can have its pluses and minuses. Field collection programs can involve inspectors walking the roads, mobile imaging vehicles taking pictures of the roads as well as other collection techniques designed to identify compliance issues along the road. No matter which solution is selected, it needs to satisfy the overall goals and objectives of the project while providing an accurate inventory of the agency’s sign infrastructure.

clip_image002

Next, an agency needs to be able to match their available funding to the technology solution that achieves their project goals and objectives. It also needs to understand the trade-offs that are the necessary evil in projects like this – available funding typically dictates the quality of the solution that can be provided by the service provider. Furthermore, the quality of the data collected and its usefulness can be impacted by the choice of the solution and available funding.

Remember that the ultimate goal of retroreflectivity compliance is centered on the replacement of signs once they fall below the minimum reflectivity standard as defined by FHWA. Many agencies would rather start replacing signs today instead of spending money to create their inventory and a management plan. This makes sense economically in the short-term, but can introduce problems from a long-term management perspective.

Step 2 – Estimating the Replacement Cost of the Sign Network

The next graphic illustrates the total replacement cost as calculated using the FHWA “Sign Retroreflectivity Guidebook” for an agency with a 4,383 centerline mile road network.

clip_image004

The cost to replace all signs for this agency approaches $17.5 million dollars. Please note that this does not include the cost of the labor, equipment and other material costs incurred for the actual installation of these signs. The inventory of signs for this agency cost approximately $800k or roughly 5% of the total replacement cost for these signs. Although significant, this investment is crucial to ensure the longevity of the Sign Management program designed to manage these assets throughout their life-cycle.

Step 3 – Choosing a FHWA-Approved Sign Management Methodology

The chart below illustrates the advantages and disadvantages related to a few of the FHWA-recommended methodologies. Most of these methods have been implemented in one way or another at various agencies across the Country.

clip_image006

The “Measured Retroreflectivity” method is popular at many DOTs and Toll Authorities. I believe this is the case because these agencies typically manage facilities that carry higher volumes of traffic that operate at higher speeds, thus increasing the risk and potential consequences of an accident. Many County and City agencies are utilizing the “Visual Nighttime Inspection, Expected Life, Control Sign, or Blanket Replacement” methods to manage their sign infrastructure. Each mentioned method is used for different reasons (financial vs. headcount) and has a lot to do with legacy management techniques (“We’ve always done it this way”).

There really isn’t a management method that can be considered “The Best” or “The Most Cost-Effective”. It is solely dependent upon an agency’s goals and objectives for the management of their sign infrastructure. I typically recommend conducting an inventory first and then implementing a management plan that uses the concepts of Condition, Risk, and Valuation to help prioritize which signs should be replaced along with the best timing for the replacement. This can prove very valuable since the highest risk signs can be replaced first and the least risky signs can be programmed for replacement as funding becomes available.

clip_image008

Finally, I also recommend that agencies utilize asset management software to manage the work performed on their sign infrastructure so that all replacements can then be managed according to their useful life and actual condition rating. This information can then be used in concert with one another to help develop a capital improvement plan that details the planned fiscal expenditures for the next 10 years, which is the typical life-cycle of a sign.

What are you going to do with your NERC data?

So, you’ve collected your entire Transmission network using LiDAR, built your PLS-CADD models and identified your encroachments – what’s next?  How about leveraging that data to manage the Work Activities required to upgrade/maintain your Transmission network?

We have all heard about Asset Management and how it can help an agency extend the useful life of its infrastructure.  We all know that in principal it makes all the sense in the world, but the actual application of these concepts require investment in software, hardware and personnel.  What we will never know is – How much should we invest in the management of our assets?  Using the NERC regulation and the frenzied data collection going on in our industry as an example, consider the following.

Most Airborne LiDAR companies are collecting and delivering data in the $500 – $1,500 per linear mile range, depending on the downstream processing requirements.  Most of this data is delivered to the end user as .LAS point clouds, PLS-CADD .BAK, files and some other CAD or GIS formats.  Once it is delivered, the agency has a unique opportunity to leverage the delivered products for future value.

If we use Vegetation Encroachment data as an example, we can illustrate how the encroachment information can be used to create a vegetation Asset Class and managed throughout its life-cycle.  Most likely, the data delivered to an agency will include .LAS point clouds with classified data reflecting terrain, conductors, towers, buildings, etc.  In addition to this, vector data is also delivered and can be used to support maintenance management activities.  The graphic below illustrates a common Transmission LiDAR deliverable.

image

Note the Red vegetation in the graphic above.  It shows the vegetation points that have been flagged as encroachment violations based on its proximity to the conductors.  These points can then be mapped in a GIS or Asset Management program for further analysis.  In doing so, an agency can gather more value from this information.  For example, the graphic below illustrates the “grow-in” (light blue) and “fall-in” (red) violations for a section of Transmission line.

image

GIS mapping provides the user the spatial context necessary to make informed vegetation management decisions.  First, the location of vegetation encroachments are known and with a little manipulation, the volume and area of the vegetation can be determined very easily.  This gives an agency the ability to control the costs associated with their vegetation management program.  Asset management software that leverages GIS can provide the tools necessary to develop an immediate return-on-investment of the software purchase and associated data collection expenditures.

First, the user creates the geospatial layers from the classified point cloud.  Vegetation violations can be exported as points and then aggregated into vegetation encroachment units.  These units are then integrated with the Work and Asset management system through the use of GIS.  Since the geometry of the encroachment units are known based on its GIS attributes, an agency can then determine the following characteristics about their encroachments:

  1. Maximum Height of Encroachment Unit
  2. Average Height of Encroachment Unit
  3. Total Area (acres) of Encroachment Unit
  4. Total Area (acres) of Encroachment Units along a particular circuit

image

Since the agency knows so much about their encroachments, they can very accurately determine the volume of vegetation that needs to be removed.  The agency also knows other geospatial characteristics of the vegetation units and can then apply specific cost factors to the removal process.  In addition, GIS also provides a great way to provide contractors with maps and exhibits that will help them generate more accurate bids based on relevant information.  The graphic below shows a KMZ export of Vegetation Encroachments that can be provided to field units in charge of vegetation removal.

image

A typical vegetation removal contract is assigned to a forestry company who heads to the field and clears vegetation based on their perception of what needs to be removed.  Now, agencies can tell the forestry companies exactly how much (estimated) vegetation needs to be removed and WHERE it is.  Pretty amazing concept to embrace because now an agency can accurately predict the costs of their vegetation management program.

Another factor that can be applied to this information is the concept of Risk.  Risk takes into consideration the consequences of failure of a particular asset and then provides a Criticality Index for specific Asset Classes and Asset Types.  The more critical the Asset – the higher the priority it gets when determining an agency’s primary work focus.  In other words, this concept helps to identify the most critical components of your infrastructure and helps you to prioritize its maintenance over less critical assets.  By prioritizing using Risk, an agency can take measures to minimize the Risk that exists in its Asset portfolio by fixing these pieces and parts first.

image

None of this stops once you get to the Work Management piece of the puzzle.  I’ll be providing more information related to tracking the work activities as they are completed in the field and using this information to develop more accurate budget forecasts for the future.

Chasing Cracks…

Not the same crack that is in the news, but it is pretty addicting…

We’ve built a bunch of new tools centered on pavement crack assessment and we’re excited about how it will increase the transparency related to pavement assessments.  In the past, pavement assessments have been more about delivering segments with PCI values attached to them and less about the actual measurements that were used during the creation of this data.

image

Our clients are always quick to say “We went out and checked a few segments and our assessments were different than what was reported”.  This lead to an educational discussion about how the ratings were created and how we applied the ASTM methodology to arrive at these results.  Most of the time we all agreed that there was always some subjectivity in the ratings, but that the standard rating methodology had been applied the same way throughout the network.

Our goal has always been to increase the transparency related to pavement inspections and this new approach has helped us to take a step in that direction.  The process is GIS-centric, as it is with all of our processes and involved a ton of tool development that will continue to evolve over time.  So, here’s what we’re doing…

First, we are collecting crack images using a downward-facing 4k linescan camera system with laser illumination.  This ensures that all of the pavement images are uniform and are not subject to low-lighting or shadows from natural and man-made features.  These images are 1mm resolution, allowing us to see the detailed cracking – especially at the lowest severity levels.

image

The following graphic illustrates the output from the crack mapping software we are using.  Cracks are identified in the imagery automatically from the software and are exported as geospatial points, lines and polygons.

ScreenShot2

The software does a great job of identifying longitudinal, transverse, and alligator cracking.  Once we have the initial crack map, our team of compilers goes in and edits the crack maps as needed.  Typically, we are editing out false-positives and adding in other distresses as dictated by the scope of work.  This editing is done within our EarthView software and is completely geospatial in nature.  In other words, we can export these cracks, so they can be viewed in a GIS.  This is pretty exciting because all of these cracks can be mapped and themed in a GIS based on their severity levels.

image

This process gives the end user of the data a simple QA/QC process that can be used to understand the specific issues related to each segment.  Furthermore, this data is then combined with other GIS data sets (Functional Classification, Traffic Counts, etc.) so that a more holistic approach can be taken towards the determination of which segments need in terms of repair methods.  This data can also be exported to Google Earth for easy viewing and display in a non-GIS software.

image

We hope that this provides the end user with more tools in their GIS arsenal to better plan, bid, and execute their Capital Improvement Planning for the year.  In other words, our clients will be able to do more with their limited funding than ever before!