Automated Pavement Distress Analysis – The Final Frontier?

 We have been working with some automated methods for quantifying crack measurements and have had some interesting results.  How great would it be to collect pavement images, batch them on a server and have it spit out accurate crack maps that you can overlay in a GIS?  The technology is here!  Or, is it?

Most pavement inspections involve intricate processes where pavement experts rate segments visually, either from field visits or rating pavement images in the office.  This introduces a lot of subjectivity in the rating results and typically culminates in a spreadsheet showing pavement ratings by segment.  The data is then modeled using ASTM performance curves that have been built from industry proven pavement experiments.

There is no doubt that these curves are tried and true representations of how pavement performs in varying physical and environmental conditions and each project should take these factors into consideration when developing the preservation plans for an agency.

We have been working to develop a rating workflow that focuses on a combination of automated and manual processes to bridge the current gap of Quantitative and Qualitative pavement inspections.  The way we are doing this is through the application of GIS to the automated rating process.  Here’s how it works…

First, we begin with a pavement image from our LRIS pavement imaging system.  Images are captured at a 1mm-pixel resolution and then analyzed through an automated image processing workflow.

image

The resulting image creates a “crack map” that identifies the type, severity and extent of the distresses on that section of pavement.  The process is fully automated and handled by the computer.

image

Once we have the crack maps in place, we then apply a manual editing process that is GIS-centric by nature and the resulting crack map is a more accurate representation of the real-world conditions.

image

Once the edited crack maps are compiled, the data is exported to a GIS where the extents are calculated geospatially and then integrated with a pavement management system.  This is where all of the Pavement Condition Indices (PCI) are calculated and applied to each agency’s specific pavement rating methodologies.  Since the process is geospatial in nature, it is easily imported to ANY pavement management software and gives our clients the flexibility to apply any rating methodology they desire.

image

Of course, all agencies have a certain spending threshold and there are cases where automation is the only way to cost-effectively manage large volumes of data.  We recognize this fact and are working hard to bridge the gap of available funding and high quality data.

Advertisements

Mobile LiDAR and Cross-Slope Analysis

DTS/EarthEye just completed a 9-mile mobile LiDAR scan of I-95 here in Florida and provided one of our partners with cross-slope information in a period of days.   The data was collected with our buddies at Riegl USA using their VMX-250 mobile LiDAR.  This information will be used to generate pavement resurfacing plans for the Florida Department of Transportation (FDOT).

This project shows the value that this type of project can provide to the end user on both sides of the fence.

First, the paving contractor can use this data to develop their 30% plans for submittal to FDOT when bidding on a resurfacing or re-design contract.  Having accurate and relevant data related to the roadway’s characteristics gives the paving contractor an edge over the competition because they know what the field conditions are before preparing an over-engineered design specification.  This happens all of the time because the detailed field conditions are unknown while they are preparing their plans and they only have historical information to work from.

On the other side of the fence resides the FDOT.  They can benefit from this information because if they can provide this detailed information as part of a bid package, they can reap the benefits that are gained from better information.  If all contractors have the detailed as-built information (or in this case, accurate cross-slopes), they can all prepare their submittals using the same base information.  This will provide the FDOT project manager with more accurate responses based on true field conditions, resulting in more aggressive pricing and decreased project costs.

Here are some screenshots of the information.

image

LiDAR Data Viewed by Intensity and Corresponding Cross-Slope Profile

Once the data has been collected and calibrated, we generate cross-slopes at a defined interval and export those out as 3D vectors.

image

These vectors are then symbolized based on their cross-slope percentages and exported as a KML file for ease of use.

image

Although this is a pretty simple step, the presentation of the data in Google Earth makes it easy for the end-user to visually identify problem areas and design the corrective actions according to field measurements.

image

Pavement Management for Cities/Counties

I just spent a great week in Klamath Falls, OR training their staff on pavement management techniques with our Engineer, Will Cook.  We deployed an asset management solution for their Pavement, Curb & Gutter, and Sign infrastructure.  We were able to determine the amount of funding necessary to keep their pavement network at steady-state and how fast it is deteriorating at their current funding levels.

Believe it or not, most agencies have no idea what they own, what it is worth, and how much funding they really need to maintain it at a specific level-of-service.

Inventory

It all begins with a Network-Level inventory of everything which gives us an idea of what they own.

Condition Assessment

Then, we need to know what its condition is.  We use this data to help prioritize assets for repair and rehabilitation.

Budgeting

Once the prioritization is complete, we apply budgeting scenarios to determine what gets fixed and when.  This leads into Capital Improvement Plan (CIP) development which evolves into an agency’s work program.

This discussion makes it all sounds easy, but at this point, it is imperative to have the local subject-matter-experts make real-world decisions on what to really do.  We’ll never rely completely on computer modeling to make these decisions, but they do help with a lot of the heavy lifting involved with managing large asset networks.

I will be posting a few articles next week detailing this process with some case studies of clients who I have worked with in the past…Stay tuned!