Automated Pavement Distress Analysis – The Final Frontier?

 We have been working with some automated methods for quantifying crack measurements and have had some interesting results.  How great would it be to collect pavement images, batch them on a server and have it spit out accurate crack maps that you can overlay in a GIS?  The technology is here!  Or, is it?

Most pavement inspections involve intricate processes where pavement experts rate segments visually, either from field visits or rating pavement images in the office.  This introduces a lot of subjectivity in the rating results and typically culminates in a spreadsheet showing pavement ratings by segment.  The data is then modeled using ASTM performance curves that have been built from industry proven pavement experiments.

There is no doubt that these curves are tried and true representations of how pavement performs in varying physical and environmental conditions and each project should take these factors into consideration when developing the preservation plans for an agency.

We have been working to develop a rating workflow that focuses on a combination of automated and manual processes to bridge the current gap of Quantitative and Qualitative pavement inspections.  The way we are doing this is through the application of GIS to the automated rating process.  Here’s how it works…

First, we begin with a pavement image from our LRIS pavement imaging system.  Images are captured at a 1mm-pixel resolution and then analyzed through an automated image processing workflow.


The resulting image creates a “crack map” that identifies the type, severity and extent of the distresses on that section of pavement.  The process is fully automated and handled by the computer.


Once we have the crack maps in place, we then apply a manual editing process that is GIS-centric by nature and the resulting crack map is a more accurate representation of the real-world conditions.


Once the edited crack maps are compiled, the data is exported to a GIS where the extents are calculated geospatially and then integrated with a pavement management system.  This is where all of the Pavement Condition Indices (PCI) are calculated and applied to each agency’s specific pavement rating methodologies.  Since the process is geospatial in nature, it is easily imported to ANY pavement management software and gives our clients the flexibility to apply any rating methodology they desire.


Of course, all agencies have a certain spending threshold and there are cases where automation is the only way to cost-effectively manage large volumes of data.  We recognize this fact and are working hard to bridge the gap of available funding and high quality data.